74 research outputs found

    Fusion of Heterogeneous Earth Observation Data for the Classification of Local Climate Zones

    Get PDF
    This paper proposes a novel framework for fusing multi-temporal, multispectral satellite images and OpenStreetMap (OSM) data for the classification of local climate zones (LCZs). Feature stacking is the most commonly-used method of data fusion but does not consider the heterogeneity of multimodal optical images and OSM data, which becomes its main drawback. The proposed framework processes two data sources separately and then combines them at the model level through two fusion models (the landuse fusion model and building fusion model), which aim to fuse optical images with landuse and buildings layers of OSM data, respectively. In addition, a new approach to detecting building incompleteness of OSM data is proposed. The proposed framework was trained and tested using data from the 2017 IEEE GRSS Data Fusion Contest, and further validated on one additional test set containing test samples which are manually labeled in Munich and New York. Experimental results have indicated that compared to the feature stacking-based baseline framework the proposed framework is effective in fusing optical images with OSM data for the classification of LCZs with high generalization capability on a large scale. The classification accuracy of the proposed framework outperforms the baseline framework by more than 6% and 2%, while testing on the test set of 2017 IEEE GRSS Data Fusion Contest and the additional test set, respectively. In addition, the proposed framework is less sensitive to spectral diversities of optical satellite images and thus achieves more stable classification performance than state-of-the art frameworks.Comment: accepted by TGR

    Improving the Classification in Shadowed Areas using Nonlinear Spectral Unmixing

    Get PDF
    This paper presents a shadow restoration method based on the nonlinear mixture model. A shadowed spectrum is modeled by using a pure sunlit spectrum for the same material following physical assumptions. Regarding pure sunlit and shadowed spectra as endmembers, an unmixing process is then conducted pixel-wise using a nonlinear mixture model. Shadow pixels are restored by simulating their exposure to sunlight through a combination of selected sunlit endmembers spectra, weighted by abundance values. Experiments conducted on a real airborne hyperspectral image are eval- uated through spectra comparison and classification. In addition, a soft shadow map is generated, which quantifies the shadow intensity at the edges between sunlit and shadow areas

    Shadow Detection and Restoration for Hyperspectral Images Based on Nonlinear Spectral Unmixing

    Get PDF
    Shadows are frequently observable in high-resolution images, raising challenges in image interpretation, such as classification and object detection. In this paper, we propose a novel framework for shadow detection and restoration of atmospherically corrected hyperspectral images based on nonlinear spectral unmixing. The mixture model is applied pixel-wise as a nonlinear combination of endmembers related to both pure sunlit and shadowed spectra, where the former are manually selected from scenes and the latter are derived from sunlit spectra following physical assumptions. Shadowed pixels are restored by simulating their exposure to sunlight through a combination of sunlit endmembers spectra, weighted by abundance values. The proposed framework is demonstrated on real airborne hyperspectral images. A comprehensive assessment of the restored images is carried out both visually and quantitatively. With respect to binary shadow masks, our framework can produce soft shadow detection results, keeping the natural transition of illumination conditions on shadow boundaries. Our results show that the framework can effectively detect shadows and restore information in shadowed regions

    Shadow-Aware Nonlinear Spectral Unmixing for Hyperspectral Imagery

    Get PDF
    In hyperspectral imagery, differences in ground surface structures cause a large variation in the optical scattering in sunlit and (partly) shadowed pixels. The complexity of the scene demands a general spectral mixture model that can adapt to the different scenarios of the ground surface. In this paper, we propose a physics-based spectral mixture model, i.e., the extended shadow multilinear mixing (ESMLM) model that accounts for typical ground scenarios in the presence of shadows and nonlinear optical effects, by considering multiple illumination sources. Specifically, the diffuse solar illumination alters as the wavelength changes, requiring a wavelength-dependent modeling of shadows. Moreover, we allow different types of nonlinear interactions for different illumination conditions. The proposed model is described in a graph-based representation, which sums up all possible radiation paths initiated by the illumination sources. Physical assumptions are made to simplify the proposed model, resulting in material abundances and four physically interpretable parameters. Additionally, shadow-removed images can be reconstructed. The proposed model is compared with other state-of-the-art models using one synthetic dataset and two real datasets. Experimental results show that the ESMLM model performs robustly in various illumination conditions. In addition, the physically interpretable parameters contain valuable information on the scene structures and assist in performing shadow removal that outperforms other state-of-the-art works

    Adaptive RBF -SMC control for multi-point mooring system

    No full text
    A stable adaptive control scheme for multi-point mooring system (MPMS) with uncertain dynamics is proposed in this paper. The control scheme is designed by a hybrid controller based on RBF (Radial Basis Function) NN (Neural Network) and SMC (Sliding Mode Control), which learns the MPMS dynamic changes, and the compensation of external disturbances is realized through adaptive RBFNN control. Meanwhile the RBF-SMC control parameters are adapted by the Lyapunov method to minimize squares dynamic positioning (DP) error. The convergence of the hybrid controller is proved theoretically, and the proposed mooring control scheme is applied to the “Kantan3” mooring simulation system. Finally, the simulation results are compared with the traditional PID controller and standard RBF controller to demonstrate the effective mooring positioning performance of the control scheme for the MPMS

    Simultaneous Removal of SO2 and NO by O3 Oxidation Combined with Seawater as Absorbent

    No full text
    Aiming at NOx (NO 90%, NO2 10%) and SO2 in simulated vessel emissions, denitration and desulfurization were studied through ozone oxidation combined with seawater as absorbent. Specifically, the different influencing factors of denitration and desulfurization were analyzed. The results indicated that the oxidation efficiency of NO can reach over 90% when the molar ratio of O3/NO is 1.2. Ozone oxidation and seawater washing in the same unit can decrease the temperature of ozone oxidation of NO, avoid high temperature ozone decomposition, and enhance the oxidation efficiency of NO. When NO inlet initial concentration is lower than 800 ppm, the NOx removal efficiency can be improved by increasing NO inlet concentration, and when NO inlet initial concentration is greater than 800 ppm, increasing the concentration of NO would decrease the NOx removal efficiency. Increasing the inlet concentration of SO2 has minor effect on desulfurization, but slightly reduces the absorption efficiency of NOx due to the competition of SO2 and NOx in the absorption solution. Besides, final products (NO2−, NO3−, SO32−, and SO42−) were analyzed by the ion chromatography

    Underwater Terrain-Aided Navigation Relocation Method in the Arctic

    No full text
    To solve the localization failure problem of terrain-aided navigation (TAN) system of the autonomous underwater vehicle (AUV) caused by large area of underwater flat terrain in the Arctic, a navigation system with relocation part is constructed to enhance the robustness of localization. The system uses particle filter to estimate the AUV’s position and reduce the nonlinear noise disturbance, and the prior motion information is added to avoid the mismatching caused by the similar altitude of low-resolution map. Based on the estimate data and the measured altitude data, the normalized innovation square (NIS) is used to evaluate the differentiation of terrain sequence, and the differentiation is used as a judgment of whether the AUV is in the switch location. A simulation experiment is carried out on the 500 m resolution underwater map of the Arctic. The results show that adding the prior motion information can restrain the divergence of the estimator; NIS can accurately reflect the sharp change of terrain sequence. After the relocation process, the AUV can still maintain the positioning accuracy within 2 km after running 50 km in the area including flat and rough terrain. This research solves the problem of localization errors in the Arctic flat terrain in the system level and provides a solution for the application of underwater navigation in the Arctic

    Research on Traffic Acoustic Event Detection Algorithm Based on Sparse Autoencoder

    Get PDF
    Road traffic monitoring is very important for intelligent transportation. The detection of traffic state based on acoustic information is a new research direction. A vehicles acoustic event classification algorithm based on sparse autoencoder is proposed to analysis the traffic state. Firstly, the multidimensional Mel-cepstrum features and energy features are extracted to form a feature vector of 125 features; Secondly, based on the computed features, the five-layers autoencoder is trained. Finally, vehicle audio samples are collected and the trained autoencoder is tested. The experimental results show that detection rate of the traffic acoustic event reaches 94.9%, which is 12.3% higher than that of the traditional Convolutional Neural Networks (CNN) algorithm
    • …
    corecore